In this blog post
Observability software must provide ROIObservability software must provide ROIObservability software must be easy to useObservability software must be easy to useObservability software must be real-timeObservability software must be real-timeObservability software must unite your dataObservability software must unite your dataObservability software must analyze 100% of unsampled event dataObservability software must analyze 100% of unsampled event dataObservability software must deliver clarity in complexityObservability software must deliver clarity in complexityObservability in actionObservability in actionYour observability software should deliver confidence in your distributed systems. On Friday deploys. During a 100x increase in service traffic. When latency starts spiking all over the network. Real observability will give you confidence.
Unfortunately, achieving this level of confidence is not as simple as flipping the switch on new telemetry streams.
What does an effective observability software deliver?
Observability software must provide ROI
Observability can't help you if it's too expensive to use when you need it most.
Because observability solutions leverage such a large volume of data, network and storage costs are a significant factor. Many observability solutions have pricing structures that penalize businesses for scaling, or moving too much data across networks to be sustainable from a cost perspective.
Make sure any observability software you are considering can grow with your business and is handling your telemetry in a cost-effective way.
Observability software must be easy to use
The days of relying on a wizard hacker with arcane system knowledge are long behind us. With context-rich trace data, correlation analysis, and developer-focused UIs, observability software should deliver a user-friendly experience that makes regression analysis, understanding service relationships, and inter-team communication easier.
By revealing the critical path of end-to-end requests, and surfacing only the relevant data to resolve an issue, observability enables better workflows for debugging, performance optimization, and crisis management.
If using an observability tool is itself an obstacle to velocity, then keep looking.
Observability software must be real-time
To allow developers to respond to –– and stay ahead of –– performance issues, an observability solution needs to be as close to real-time as possible. With queries handling data from thousands of spansthousands of spans from potentially just as many services, it is important that your observability software be able to keep up and not turn into a bottleneck itself.
This isn’t just speed for speed’s sake –– this is intelligent speed. Getting telemetry insights and alerts in front of service owners when it matters can save your company untold costs in missed SLOs and soured customer relationships.
Observability software must unite your data
Your observability software needs to be a centralized resource for your system data. Logs, metrics, traces, service relationships –– all of this information should be accessible, user-friendly, and contribute to a larger, coherent picture of system health, in a single context.
If an observability software requires context-switching between various third-party services and platforms, it is failing your developers. Time spent this way costs developers precious time, increases the likelihood of oversights, and isn’t necessary.
A true observability software provides a single, shared context across roles and organizations, as it enables developers, operators, managers, PMs, contractors, and any other approved team members to work with the same views and insights about services, specific customers, SQL queries, etc.
Observability software must analyze 100% of unsampled event data
If an observability tool is pre-sampling all of your data, it isn’t an observability tool.
One of the central tenets of observability is the ability to answer performance questions that you didn’t predict. Pre-sampling involves making assumptions about your data, and this can come back to haunt you when things go wrong. Sometimes unique behaviors are hiding in single traces, and pre-sampling is basically flipping a coin on thousands of traces before ever looking at the data.
Make sure the insights from your observability software are made from all of your data, otherwise you might lose out on things like outlier detection, correlations, and accurate performance shapes.
Observability software must deliver clarity in complexity
Microservice complexity is a legitimate challenge for development teams. The move from monolith tightens scope and increases release velocity, but creates a tangle of service dependencies that no single person can, nor should, be expected to troubleshoot without assistance.
An observability solutionobservability solution should clarify the nebulous tangle of services, and make possible dynamic, reproducible root-cause analysis that doesn’t rely on some preternatural knowledge of the system that is all but impossible in a complex microservice architecture.
This often includes service dependency maps, critical path analysis, automated root cause identification, and UI that is easy to use for developers at all levels.
Robin Whitmore wrote a great article called, “Data-Driven Hypotheses with Lightstep: A Step-by-Step Guide”“Data-Driven Hypotheses with Lightstep: A Step-by-Step Guide” wherein she walks readers through root-cause analysis on our observability software.
Observability in action
For a better idea of how observability can make it easier to resolve incidents and improve system performance, check out Lightstep’s SandboxLightstep’s Sandbox!
Interested in joining our team? See our open positions herehere.
In this blog post
Observability software must provide ROIObservability software must provide ROIObservability software must be easy to useObservability software must be easy to useObservability software must be real-timeObservability software must be real-timeObservability software must unite your dataObservability software must unite your dataObservability software must analyze 100% of unsampled event dataObservability software must analyze 100% of unsampled event dataObservability software must deliver clarity in complexityObservability software must deliver clarity in complexityObservability in actionObservability in actionExplore more articles

How to Operate Cloud Native Applications at Scale
Jason Bloomberg | May 15, 2023Intellyx explores the challenges of operating cloud-native applications at scale – in many cases, massive, dynamic scale across geographies and hybrid environments.
Learn moreLearn more
2022 in review
Andrew Gardner | Jan 30, 2023Andrew Gardner looks back at Lightstep's product evolution and what's in store for 2023.
Learn moreLearn more
The origin of cloud native observability
Jason English | Jan 23, 2023Almost every company that depends on digital capabilities is betting on cloud native development and observability. Jason English, Principal Analyst at Intellyx, looks at the origins of both and their growing role in operational efficiency.
Learn moreLearn moreLightstep sounds like a lovely idea
Monitoring and observability for the world’s most reliable systems